Introduction – Cryptography and Secured Communications –

Lionel Morel

Telecommunications - INSA Lyon

Fall-Winter 2022-23

Introduction

Lecturer - Lionel Morel (lionel.morel@insa-lyon.fr)

- MSc in Computer Science Grenoble 2001
- PhD in CS at INPGrenoble Programming of Critical Reactive Systems
- Associate Professor at INSA Lyon since 2007.
- (past) Research topics:
 - at Grenoble, Turku (Finland), Rennes, and Lyon: Models of concurrency and computations, programming languages, performance analysis for parallel multi-core architectures.
 - at CEA-Grenoble (2017-2020): Counter-measures against physical attacks (side-channel, fault-injection, etc)
- Current Research: operating systems and programming languages for addressing so-called frugality, Phenix ^a
- Teaching at the IF department: Computer Architecture, Operating Systems, Compiler Construction

^ahttps://phenix.citi-lab.fr/,lionel.morel.ouvaton.org

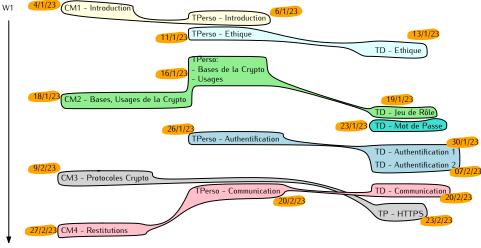
Un petit détour

Course Objectives

Course Objectives

Give you some "necessary and sufficient" background on:

- Cryptography
- Cryptographic protocols
- Public-key infrastructures
- Associated ethical issues


But:

- Security is a vast topic, covered by several years of studies if you want to specialize
- > You will not be a specialist, but a enlightened neophytes.

 \Rightarrow

- Please don't change cryptography yourself
- Go and ask a specialist

Course Plan

W9

General Considerations

Information Security

- Need to protect all elements dealing with information: computers, networks, people
- Security covers a lot of different aspects: physical security, social engineering, communication security, etc.
- \triangleq practice that allows to maintain the CIA triad (see next)

¹https://en.wikipedia.org/wiki/Information_security

The CIA Triad

- Confidentiality: Information is not made available or disclosed to unauthorized individuals, entities, or processes.²
- Integrity: Information is not modified in an unauthorized or undetected manner. Also called anti-tampering.
- Availability: Information is available when it is needed.

²Beckers, K. (2015). Pattern and Security Requirements: Engineering-Based Establishment of Security Standards.

Threats

- A threat is a potential negative action or event that can result in unwanted impact to a computer system, application or user information.
- A threat model is a set of properties that characterize threats associated to a particular environment. Often implies security requirements on a system.

Vulnerabilities

- A vulnerability is a weakness which can be exploited by an attacker to access unauthorized information or to compromise the attacked system's behavior.
- The attack surface of a system/application is the set of (known) vulnerabilities exposed by it to a potential attacker.

Attacks

Attack = Attempt to exploit a vulnerability

Attack can be:

- Passive (eavesdropping, side-channel, etc)
- Active (worm, faults, etc)
- Denial-of-service, ie render the service unusable.
- When the attack is successful, we say the system is compromised

Trust

- Trust = Degree to which an entity (person, system, hardware, software) is going to behave as expected
- A Trust model describes which entity(ies) is/are trusted and at which level.

The Attacker's Toolbox

Attack Examples

- Trojan: a malevolent binary that pretends to be something else
- Worm: self-replicates to propagate to other computer hosts
- Virus: replicates itself by modifying other programs to insert its own code
- Buffer Overflow: use adjacent placement of data in memory to modify some private data by writing to public data:

variable name		В								
value		19	1979							
hex value	00	00	00	00	00	00	00	00	07	BB

char A[8] = ""; unsigned short B = 1979;

. . .

strcpy(A, "excessive");

variable name		А											
value	'e'	'x'	'c'	'e'	's'	's'	'i'	'v'	258	25856			
hex	65	78	63	65	73	73	69	76	65	00			

 \triangleq "Anomaly whereby a program, while writing data to a buffer, overruns the buffer's boundary and overwrites adjacent memory locations."³

- Different types: stack-based, heap-based, format-string attack
- Different consequences: private data corruption, arbitrary code execution, etc

³https://en.wikipedia.org/wiki/Buffer_overflow

Buffer Overflow Example

```
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int main(int argc, char *argv[])
 // I have a "secret" variable, statically allocated
 char secretBuf[9]= {'p'.'r'.'o'.'t'.'e'.'c'.'t'.'e'.'d'};
 // This is an input Buffer (5 chars including "end of line")
 char inputBuffer[5];
 // a prompt how to execute the program...
 if (argc < 2)
          printf("strcpv().NOT.executed....\n"):
          printf("Svntax:..%s..<characters>\n". argv[0]):
         exit(0);
 // copy the user input to my input buffer, without any
 // bound checking
 strcpv(inputBuffer. argv[1]):
 printf("buffer_content=_%s\n", inputBuffer);
 printf("secret_Buf_=_%s\n". secretBuf):
 return Q:
}
```

To test: gcc bufover.c -o buf ./buf spraythis

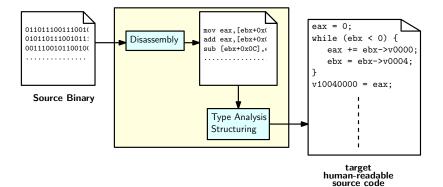
outputs: buffer content= spraythis secret Buf = this

Format-String Attack

 \triangleq "[...] occurs when the submitted data of an input string is evaluated as a command by the application."⁴

```
#include <stdio.h>
void main(int argc, char **argv)
{
    // This line is safe
    printf("%s\n", argv[1]);
}
```

To test:


gcc formatstring.c -o formats

./formats "Hello World %p %p %p %p %p %p %p

outputs: Hello World %p %p %p %p %p %p %p %p Hello World 0x1 0x1 0x7fcbf1fdfb23 0x3 0x77

⁴https://owasp.org/www-community/attacks/Format_string_attack

Reverse Engineering

Physical Attack Examples

Physical Attack Examples

Phase 2: Firmware Update Takeover

ZigBee range = 400m Take Over ONE light bulb Propagate worm through lightbulbs

The Defender's Toolbox

Defenses - a quick panorama

- Cryptography: how to encrypt data
- Secured communication protocols: how to encrypt data + share keys
- Physical shielding: how to protect device from physical alteration
- ICI il y a du travail

Definition - Communication Security ⁵

Confidentiality Communication Security ≜ discipline of preventing unauthorized interceptors from accessing telecommunications in an intelligible form, while still delivering Availability un-altered content to the intended recipients.

Integrity

⁵https://en.wikipedia.org/wiki/Communications_security

Cryptology

Cryptology, is the science of practice and study of techniques for secure communication in the presence of adversarial behavior.

- Cryptography: Practice and study of techniques for secure communication in the presence of adversarial behavior.
- Cryptanalysis: Process of analyzing information systems in order to understand hidden aspects of the systems.

Cryptology = Cryptography + Cryptanalysis

In this course, we mainly focus on Cryptography.

History

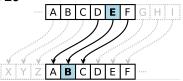
A brief history of cryptography

- Keeping message secret has always been a (powerful) men's concern ...
- but (at least today) it's also of every person's interest.
- ... because there is no "I got nothing to hide"

History (1) The Skytale

- Oldest cryprtographic device known (-404 BC)
- Write a message on a leather strap
- Wrap the strap around a rod with correct diameter
- Key = Shape of the rod (diameter, number of sides)

History (1) Caesar cipher


Substitution cipher

- ► Each letter is encoded with its order in the alphabet: A→0, B→1, ..., Z→26
- We choose a fixed shift value sh
- To encrypt, each letter P_i in Plaintext is replaced by the corresponding shifted letter:

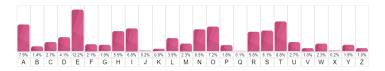
 $\boldsymbol{E}(\boldsymbol{P}_i) = (\boldsymbol{P}_i + \boldsymbol{sh}) \text{ mod } 26$

To decrypt, each letter C_i in the Ciphertext is converted back with :

$$D(C_i) = (C_i - sh) \mod 26$$

History (1) Caesar cipher

- Encryption and decryption are cheap
- Easy to crack with frequency analysis
- Sufficient when no-one around can read :) (in particular, what's the difference between a foreign language and an encrypted language, if you can't read the first).


General case: Substitution cipher

Principle

Replace a letter by another ABCDEFGHIJKLMNOPQRSTUVWXYZ AZERTYUIOPQSDFGHJKLMWXCVBN

Attack

- Frequency analysis
- Each letter in a given language has a specific occurrence frequency
- Replace letter with frequency f in the encrypted text by letter with frequency f in the original alphabet

Vigenère cipher (1/3) - Principle

- Invented XVIth century
- Based on a Vigenere table 26x26 VigT : Each line starts by a different letter L of the alphabet and contains the whole alphabet in the usual order, starting from L and looping back from A to Z

	A	A	В			Lettre en clair																						
	Α		D	С	D	Е	F	G	H	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	v	W	X	Y	Z	П
		А	В	С	D	Е	F	G	Н	Ι	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	П
1	B	В	С	D	Е	F	G	Н	Ι	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	А	
	С	С	D	Е	F	G	Η	Ι	J	K	L	М	Ν	0	Р	Q	R	s	Т	U	V	W	Х	Y	Ζ	А	В	
	D	D	Е	F	G	Η	Ι	J	K	L	М	N	0	Р	Q	R	s	Т	U	V	W	Х	Y	Ζ	А	в	С	
	E	Е	F	G	Η	I	J	K	L	Μ	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	А	В	С	D	
	F	F	G	Η	Ι	J	Κ	L	Μ	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	А	В	С	D	E	
	G	G	Η	I	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	А	В	С	D	Е	F	
	H	Η	Ι	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	А	В	С	D	Е	F	G	L
PH	I	Ι	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	А	В	С	D	E	F	G	Η	e t
L A H	J	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	Α	В	С	D	Е	F	G	Η	I	t
e l	K	K	L	Μ	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	А	В	С	D	E	F	G	Η	Ι	J	r
U	L	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	А	В	С	D	E	F	G	Η	Ι	J	K	e
LEE	М	М	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	A	В	С	D	E	F	G	Н	Ι	J	K	L	c
ЪÉ	N	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	Α	В	С	D	Е	F	G	Η	Ι	J	K	L	Μ	h
i -	0	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	Η	Ι	J	K	L	Μ	N	i
1°E	P	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	А	В	С	D	E	F	G	Η	Ι	J	K	L	Μ	Ν	0	I f
1. E	Q	Q	R	S	Т	U	V	W	Х	Y	Ζ	А	В	С	D	E	F	G	Н	Ι	J	K	L	Μ	Ν	0	Р	r
ΤE	R	R	S	Т	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	é
	S	S	Т	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	e

32/47

Vigenère cipher (2/3) - Principle

- Let's send a message m of length l(m) : m = killthekingtonight, l(m) = 18
- Choose a key k of l(k) characters : k = HORSE, l(k) = 5
- Repeat the key until you reach k' of length I(k') = I(m) k' = HORSEHORSEHORSEHOS
- encoded letter m_i by replacing it by VigT[k'_i][m_i]: cipher(m,k) = RWCDXOSBARNHFFMNVL

Strength: disguise the plaintext's letter frequency to interfere with frequency analysis.

Vigenère cipher (3/3) - Kasiski's Attack (1863)

- Some repeated word may be encrypted using the same key letters:
 Ciphertext: CSASTPKVSIQUTGQUCSASTPIUAQJB
- Distance between repetitions of CSASTP = 16
- Assume repeated segments in the ciphertext encode the same plaintext
- ▶ Key length is 16, 8, 4, 2 or 1 ... 1 and 2 are too simple.
- We know the key starts by A, B, C, D ... Let's try all possible keys.
- Quite quickly, we find that: Plaintext: CRYPTOISSHORTFORCRYPTOGRAPHY

The longer the ciphertext, the more accurate the analysis

One-time pad (1/3)

- Invented in 1882
- Substitution cipher
- Choose a random key K at least as long as the plaintext
- To encrypt, each letter P_i in Plaintext is replaced by the corresponding shifted letter:

 $\boldsymbol{E}(\boldsymbol{P}_i) = (\boldsymbol{P}_i + \boldsymbol{K}_i) \text{ mod } 26$

 $D(C_i) = (C_i - K_i) \mod 26$

One-time pad (2/3) - Pros and Cons

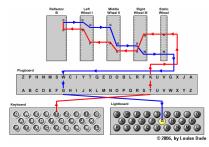
😳 Proven secure

- Even to frequency analysis
- Encryption and decryption are cheap
- Fresh key is needed for every plaintext
- Key must be as long as the plaintext
- Key must be kept secret
- Key must not be lost (not by one character)
- Key must be truly random

One-time pad (3/3) - a long lasting history

- ▶ 1920: Weimar Republic Diplomatic Service
- around 1930: Soviet Union (after breaking of own cryptography by the British)
 KGB spies used them until the 1950s and 1960s
- during WWII: used in the SIGSALY secure speech system for high-level Allied communications
- from 1963: (after the Cuban Missile Crisis): Moscow-Washington-DC hotline used teleprinters
- During the 1970s: the NSA used them extensively
- from 1988: The African National Congress to communicate between ANC leaders outside South Africa and in-country operatives

Enigma


- Invented at the end of WWI
- Used extensively by Nazi Germany during WWII
- First cracked by Polish services during the early 30s ...
- ... then by British-led effort at Bletchley Park, including Alan Turing.

Enigma - How does it work?

- Substitution cipher
- Originally patented in 1918

- All three wheels are wired differently
- Wheels are initialized to any position
- The reflector never wires a letter to itself
- Army-grade version :
 - Choose 3 wheels amongst a set of 6
 - Plugboard
 - Change the initial rotor setting

Enigma - Combinatorial

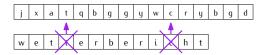
Every day, the machine is reset to a pre-established configuration:

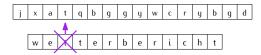
- ▶ 60 Rotors choice (3 or 4 or 5 among 6 possible).
- 26³Rotors initial letter combination
- Plug-board settings:

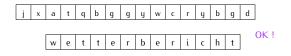
26! 61101210

 The initial setting for a specific day, use a pre-printed paper codebook (gives initial configuration)

	Datum	Walzenlage			Ringstellung			Steckerverbindungen								1	· · ·	Kenngruppen				
	31.	IV	v	I	21	1.5	16	KL	IT	FQ	HY	XC.	NP	٧Z	JB	SB	OG	jkm	ogi	ncj	glp	
	30.	IV	II	III	26	1.4	11	· ZN*	80	QB	ER	DK	ΧU	GP	TV	SJ	LM	ino.	udl	nam	lax	
	29.	II-	V	IV	19	-09	24	20	HL	CQ	NW.	0A	ΡY	ΒB	TR	DN ·	YI .	n,c i	oid	yhp	nip	L
	28.	VI	III	I	0.3	0.4	22	ΥT	BX	CV	2N	UÐ	IR	SJ	HW	GA	KQ	zgj	hlg	XKY	ebt	1
	27.	v	1	IV	, 20	0.6	18	KX	GJ	EP	AC	TB	HL	MW	QS	DV	02	bvo	sur	CCC	lqe	
	26.	IV	I	v	10	17	01	YV	GT	09	-WN	FI	SK	LD	RP	MZ	BU	jhx	uuh	giw	ugw	
	25.	v	IV	III	13	0.4	17	QR	GB	HA	NM	VS	#D	ΥZ	OF	XK	ŶΈ	tba,	pnc	ukd	nld	÷
	24.	III	II	IV	09	20	18	RS	NC	WK	60	YQ	AX	EH	VJ	ZL	PF	nfi	mew	xbk	yes	
	23.	· V.	II	TH	11	21	08	BY	DT	KF	MO	XP	HN	¥3	ZL	IV	JA	lsd	nuo	VCT	A G X	L
	22.	I	II.	TV	01	25	02	PZ	SE	OJ	XF	HA	ЭB	VQ	UY	KW	LR	yji	rwy	rdk	nso	ł.
	21.	IV/	I	III	06	22	03	GH	JR	TQ	KF	N2	IL	WH	BD	UQ	EC ·	ema.	mlv	JJY	iqh	1
	20.	1 V	Ι.	Î	12	25	08	TF	RQ	XV	pz	PY.	NL	WI	SJ	MÉ	GB	xjl	pgs	ggh	znd	ł.
4	19.	IV	III	TP	07	05	23	乙茂	EU	AC	0D	KP	VO	Q\$	NW	HL	B.M.	vpj	zge	jrs	ogm	L
	18,	II	III	Y	. 19	14	22	₩G	OM	RL	DB.	ST.	AQ		-X.R	YN	IJ	oxd	100	-iou	-y t t	1
1	17.	IV	Ι.		12	08	21	ME	ĤΧ	BF	WY	2D	TR-	FJ	AG	IL	KQ	tak	pjs	kdh	jvh	Ľ
	16.	I	II	III .	07	11	15	W2	AB	MO	TF	RX	3 G	QU	. A3.	YN	BL	pzg	OVW	wyt	iye	Į.
	15.	III	ÍI	v	06	16	02	GT	YC	EJ	L'A	RX	PN	IS	WB	MH	2V.	bhe	xzm	yzk	evp	1
	14.	II	I	2°.V.	23	0.5	24	AZ	CJ	WF	ŪΥ	SO	QV	MI	NH	DP	GX	fdx	tyj	bmq	typ	i.
	13.	IV.	IIX	v	03	25	10	CX	KN-	JR	ÞQ	IU	TL	HZ	MP	BP	WB	zfo	bjr	ZWX	. g v n	E
	12.	I	III	II	26	01	18	QB	YE	WN	AI	GJ	TO	HR	FK	PS.	CM	upc	anf	tkr	pwz	1
	11.	V	Ι.	III	. 17	1.3	.04	SV	. GO	PA	ZR	FN	HI	YM.	WT	DE	BJ	vdh	ego	wmy	uti	I.
	10.	T	v	ĨV	26	07	16	SW-	AQ	NF	FO	VY	UΧ	MK	CL	87	ZJ	rpl	anw	vpr	mhn	T.
	. 9.	Ť.	III	IV	17	10	18	BH	IR	GK.	NZ	SP	UA	LD	00	JM	YV	knq	ysq	rhj	t1j -	h
	8.	. V	. II	I	23	11	25	QY	OĠ	ST	HA	CB.	WD	KL	JN	VX	IU	1ro	avw.	axh	ĝws	£
	-	1.100		-		100.0	07	D.C.	me	10.17	10	12.17	p'r.	CIL	. 0.4	OD	MM	in tw	mhh	myo	imz	н


40/47


- To brute-force Enigma is unpractical: > 150 millions millions combinations
- A letter is encrypted into a different letter every time
- but never to itself !! Main flaw


...

 Try to guess a word or phrase in a message (and Germans military did use recurring messages, like weather reports)

j	x	а	t	q	b	g	g	y	w	с	r	y	b	g	d]
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

- Adding a couple more properties, evict impossible configurations.
- Scan through the remaining combinations using the Bombe : electro-mechanical machine able to "play" 36 Enigma equivalent "in parallel".
- In the end guess the key (wheel starting positions + plug-board) in less than 20minutes per day.

Enigma

⁶watch

https://en.wikipedia.org/wiki/The_Imitation_Game

More Recent history Symmetric (private-key) cryptography:

- 1975 IBM proposes the Data-Encryption Standard
- ▶ 1977 DES Adopted as a FIPS standard
- 1994 Differential-linear cryptanalysis of DES is proposed
- 1996 call for DES replacement by NIST
- ▶ 1998 Brute-force attack on DES demonstrated feasible
- 2001 AES announced as replacement for DES
- 2023 At present, there is no known practical attack that would allow someone without knowledge of the key to read data encrypted by AES when correctly implemented.^a
- Asymmetric (public-key) cryptography:
 - 1976 Diffie-Hellman key exchange protocol proposed
 - 1977 RSA (Rivest-Shavir-Adleman)
 - 1985 El-Gamal encryption
 - ▶ 1985-... Elliptic-Curve Cryptography

Course Plan

Lectures

- Symmetric cryptography, Asymmetric cryptography, Key sharing, compromises
- Security protocols: Public-Key Infrastructures, TLS, SSH, HTTPS, Kerberos, VPNs,

Lab / Paper Sessions

- Ethical considerations
- Applying asymmetric encryption principles
- Password storage
- Certification and Public-Key Infrastructures
- Cryptographic Protocols
- Reading survey project

All details on https://lmorel-insa.github.io/csc/

References

- On exploiting buffer overflow: https://youtu.be/1S0aBV-Waeo
- Turing's Enigma Problem Part 1: https://youtu.be/d2NWPG2gB_A
- Turing's Enigma Problem Part 2: https://youtu.be/kj_7Jc1mS9k
- Some details on the working of the Enigma (with a real machine presented): https://youtu.be/G2_Q9FoD-oQ
- How easy is to crack Enigma today: https://youtu.be/RzWB5jL5RX0