
Cryptography - Principles
–Cryptographie et Sécurité des

Communications–

Lionel Morel

Telecommunications - INSA Lyon

Fall-Winter 2022-23

1 / 53

Context

2 / 53

Previously

I Caesar Cipher
I One-Time Pads
I Enigma
I Cryptology = Cryptography + Cryptanalysis

3 / 53

Today’s objectives

I Encryption / Decryption (Confidentiality)
I Verification (Integrity)
I Signature (Authenticity)

4 / 53

Kerchoffs Principle (in “La Cryptographie Militaire” 1883)

I The adversary knows the system [Shannon]
I 6= Security by Obscurity
I Largely accepted in cryptography
I Can be more widely applied to InfoSec (Information

System Security) in general.

5 / 53

Confusion and Diffusion (Shannon, 1949)

Confusion
I Each bit in the ciphertext should depend on several parts

of the key
I Usually implemented using Substitutions, aka S-Boxes

Diffusion
I Encryption/decryptions should imply an avalanche effet.

Precisely (in the original Shannon description): changing a
single bit in the plaintext changes half of the bits in the
cipher-text (eg at the block granularity)

I Usually implemented using Permutations (P-Boxes)

6 / 53

Precautions

I Use recognized libraries (eg OpenSSL), not your own
implementation

I Prefer open-source implementations (easier to identify
bugs and backdoors)1

I In this class, a lot of simplified versions (same on
wikipedia)

1https://www.theguardian.com/world/2013/sep/05/
nsa-how-to-remain-secure-surveillance

7 / 53

https://www.theguardian.com/world/2013/sep/05/nsa-how-to-remain-secure-surveil
https://www.theguardian.com/world/2013/sep/05/nsa-how-to-remain-secure-surveil

Symmetric Cryptography

8 / 53

Symmetric Cryptography - Principles

plaintext

key

Encrypt
Bonjour,
RDV au
twenty-two
bar,

0xAE472F26DC015

Unsafe Channel

Decrypt

Alice Bob

key
0xAE472F26DC015

plaintext
Bonjour,
RDV au
twenty-two
bar,

key exchanged through a presumably same channel

I Encryption, Decryption, Signature and Verification use the
same key

I Used implementations are quite efficient.
I A key for each pair of communicating entities
⇒ Rapid explosion in the number of keys

9 / 53

Symmetric ciphers - Basic Principles
Plaintext

P0 P1 P2 Pn−1 Pn

S-Box S-Box

Ciphertext

P-Box

Built as a network of substitution/permutation functions:
I Substitution: replace n bits by a pre-determined (but

moving) table. Must be one-to-one (to allow reversibility of
encryption function)

I Permutation: exchange bits
10 / 53

Symmetric ciphers - Basic Principles

Block cipher
I Treat input as fixed-size blocks (between 64 and 128 bits)

More secure
Requires padding

Stream cipher
I Treat input one byte at a time
I The encryption of one byte depends on the current state of

the cipher (hence of its history of encryption),
fast HW implementation

Security less guaranteed

11 / 53

Symmetric ciphers - Operation Modes
Electronic Code Book:
I Message is divided into blocks and each block is

encrypted/decrypted separately

Lacks diffusion

12 / 53

Symmetric ciphers - Operation Modes

Cipher Block Chaining
I Initialization Vector to make all cipher message unique

encryption cannot be parallelized

13 / 53

Symmetric ciphers - Operation Modes

CounTeR

14 / 53

Feistel

plaintext

L0 R0

fk0

fk1

Lr Rr

ciphertext

L1 R1

I block cipher
I r rounds
I key k is spilt into r subkeys:

(k0, ..., kr−1)

I plaintext = (L0,R0)

I (Li+1,Ri+1) = (Ri ,Li ⊕ fki (Ri))

I General structure used in all
other ciphers

15 / 53

Symmetric Cryptography - DES

I Expands Feistel algorithm, by introducing:
I More permutations
I Substitution Boxes (S-Boxes)

I Designed (and initially published) in 1975.
I Block-cipher

16 / 53

DES - General Algorithm

plaintext

L0 R0

L15 R15

ciphertext

IP

k0OneRound

64

3232

L1 R1

IP
64

32

32

17 / 53

DES - One Round

Ri
32

Expansion Function

48

ki

48

48-bits subkey obtained through a
key-schedule algorithm using the
original 64-bits key as input

B1 B8

S1 S8

6 6

6 6

C1 C8

32

Permutation

Ri

32

18 / 53

DES - Weaknesses and Attacks

I Key size in DES was reduced from 128 bits to 56 bits (after
discussions with NSA) “to fit on a single chip”

I Practically cracked (brute-forced) in 1997
I Most practical attack to date: still brute force (ie trying out

all possible key in turn).
I Attacks faster than brute-force:

I Differential cryptanalysis: requires 247 chosen plaintexts
I Linear cryptanalysis: requires 243 chosen plaintexts

19 / 53

Example: Differential Cryptanalysis
Principle:
I Choose two plaintexts x and y s.t.2:

y = x ⊕∆x
I Compute the corresponding cyphertexts and for each

S-Box S:
I S(x , ki)
I S(y , ki) = S(x ⊕∆x , ki)

I Compute difference on S-Boxes:
I ∆y = S(x ⊕∆x , ki)⊕ S(x , ki)

I Repeat this for many plaintexts and several key hypothesis
ki , i ∈ {0,n}

I key kj that minimizes ∆ is deemed “most probable”.
Limits:

In practice requires 247 well-chosen plaintext (so that ∆x is
“not too big”)

Limits: choose the “right” plaintexts
2⊕ = “xor”

20 / 53

Bonus: why ⊕ (xor) is “difference”?

⊕ 0 1
0 0 1
1 1 0

Which means x ⊕ y = 1 iff x 6= y

21 / 53

3DES

I Standardized in 1998 to compensate for the weaknesses
of DES

I DES has a 56-bits key
I 3DES chains 3 DES together:

I Encrypt = Encrypt(k1)→Decrypt(k2)→Encrypt(k1)
I Decrypt = Decrypt(k1)→Encrypt(k2)→Decrypt(k2)
I Key: 112 bits (k1|k2)

I Developped in parallel of AES (waiting for AES to be
defined)

22 / 53

AES - Advanced Encryption Standard

I Supersedes DES
I Standardized in 2001
I NIST-organized competition with 5 finalists:

I IBM proposed MARS
I RSA proposed RC6
I Serpent by Anderson, Bihman, Knudsen
I Twofish by Bruce Schneier et al
I Rijndael, by Daemen and Rijmen

I Rijndael’s was elected by community after a thourough
international comparative effort (including NSA,
companies, academics), based on security, performance
(speed, memory usage).

I NB: no-patent allowed (imposed by the NIST)

23 / 53

AES - Principle3

I AES operates on 4× 4 array of 16 bytes, called the state
b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15


I Key size specifies the number of transformation rounds to

convert input plaintext into output ciphertext:
I 10 rounds for 128-bit keys
I 12 rounds for 192-bit keys
I 14 rounds for 256-bit keys

3https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
24 / 53

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

AES - Algorithm (for 10 rounds)

void AES_Run_secure(void){
int i;
addRoundKey();
for(i = 0; i < 9; i++){

subBytes();
shiftRows();
mixColumns();
addRoundKey();

}
subBytes();
shiftRows();
addRoundKey();

}

25 / 53

AES - Initialization

I KeyExpansion — round keys are derived from the cipher
key using the AES key schedule. AES requires a separate
128-bit round key block for each round plus one more.

I Initial State = Input plaintext

26 / 53

AES - Round Key Addition

I AddRoundKey – each byte of the state is combined with a
byte of the round key using bitwise xor.

27 / 53

AES - SubBytes

I SubBytes = a non-linear substitution step where each byte
is replaced with another according to a lookup table.

I lookup table = S-box

28 / 53

AES - SubBytes

I SubBytes = a non-linear substitution step where each byte
is replaced with another according to a lookup table.

I lookup table = S-box

28 / 53

AES - ShiftRows

ShiftRows = a transposition step where the last three rows of
the state are shifted cyclically a certain number of steps.

29 / 53

AES - MixColumns
I MixColumns = a linear mixing operation which operates on

the columns of the state, combining the four bytes in each
column. AddRoundKey

I Together with ShiftRows, MixColumns provides diffusion in
the cipher.

30 / 53

AES - One Round

One Round ==
subBytes();
shiftRows();
mixColumns();
addRoundKey();

I Repeat 9, 11 or 13 rounds
I Plus an extra one without the MixColumns

31 / 53

AES - Weaknesses and Attacks

Related-key attacks exists
I 299.5 time and space complexity
I btw: age of universe ˜ 270

I Anyway totally impractical (because keys are well-chosen
to be independant in crypto-systems)

Side-channel attacks are practical
I 6-7 blocks plaintexts needed
⇒ requires HW protections

32 / 53

Symmetric Cryptogaphy - Conclusions

Overall very effecient (linear in the size of data to encrypt)
Arithmetic/Logical operations are simple: xor.

Requires a shared key!
I Solutions to this:

I Avoid the need for a common key
I Find a way to securely share a common key

33 / 53

Key Sharing Problem

I Symmetric cryptography uses same key to encrypt and
decrypt

I Problem: how to share this key
I Hypothesis: there is no secure channel to exchange the

key

34 / 53

Diffie-Hellman Key Exchange

Alice Bob

let’s agree on :
p = 23 (prime)
and g = 5
(primitive root modulo 23)

Alice chooses a
secret key PA

gPA mod p

Bob chooses a
secret key PB

gPB mod p

Alice computes
(gPB mod p)PA mod p
= gPBPA mod p

Bob computes
(gPA mod p)PB mod p
= gPAPB mod p
= gPBPA mod p

Alice and Bob now
share a common key
gPAPB mod p

NB2: g is a primitive root modulo n if
∀a (integer) coprime to n, ∃k for which
gk ≡ a(modn).

NB3: The strength of
the scheme comes from the
fact that gPAPBmodp =
gPBPAmodp take extremely
long times to compute by
any known algorithm just
from the knowledge of p, g,
gPAmodp, and gPBmodp.

NB1: gkmodn is the modular exponen-
tiation and can be computed quiet effi-
ciently....

35 / 53

Hash

36 / 53

Cryptographic Hash

plaintext

key

Sign
Bonjour,
RDV au
twenty-two
bar,

0xAE472F26DC015

Unsafe Channel

Verify

Alice Bob

key
0xAE472F26DC015

Alice is really
the emitter!!

key exchanged through a presumably safe channel

I eg Hash-based Message Authentication Code
I Only sender and recipient can sign/verify the message

37 / 53

Cryptographic Hash - Principle

I Compute a “footprint”
I The message can be of any size, the footprint is of fixed

size
I Pseudo-unique identification of message
I Used for:

I Integrity checks
I Cryptographic signature
I PRNG
I Hashed password storage

38 / 53

Cryptographic Hash - Good Properties

I Pre-image resistance: no one can reverse the hash
function (to find input from output)

I Second pre-image resistance: unicity of hash. Given an
input and the corresponding hash, one cannot find another
input with the same hash.

I Collision-resistance: no-one can produce two different
inputs with the same hash

I Randomness

39 / 53

Cryptographic Hash - today’ state of affairs

Existing (and used) implementations
I MD5: please don’t use anymore: “cryptographically broken

and unsuitable for further use”
I SHA-1: not recommanded anymore (since 2017)
I SHA-2: still not planned for removal
I SHA-3: standardized in 2015

Current situation
I Hash functions are critical in crypto!
I SHA-2 is still safe but is conceptually close to SHA-1 and

might share some weaknesses with it
I SHA-3 considered “as safe” but built completely differently

40 / 53

Asymmetric Cryptography

41 / 53

(general) Asymmetric Cryptography

I Each participant u has a pair of keys (Pubu,Privu).
I u sends Pubu to v
I v sends Pubv to u
I u can encrypt its messages to v using a combination of

Pubv and Privu

I v can decrypt messages from u using a combination of
Pubu and Privv

Note:
I Relies on “hard mathematical problems”:

I Discrete logarithm
I Factorization of large numbers

I Usually slow (exponentiation)

42 / 53

RSA

I Invented in 1977 by Rivest, Shamir and Adleman
I MIT Patent in 1983, expired in 2000
I Security based on the difficulty of factorizing large integers

43 / 53

RSA - Key generation

I Choose p and q, two prime numbers: random, kept secret
I Compute n = pq
I Compute λ(n),

I λ(n) = lcm(λ(p), λ(q))
I = lcm(p − 1,q − 1)
I = pq

gcd(p,q) ... (gcd obtained with Euclid algorithm)

I Choose e s.t.:
I 1 < e < λ(n)
I gdc(e, λ(n)) = 1

I Compute d = e−1 mod λ(n)
I d is the “private key exponent”

Pub = (e,n) Priv = (d,n)

44 / 53

RSA - Encryption

Plaintext Padding
Scheme

m

Encrypt

c ≡ me mod n

45 / 53

RSA - Decryption

c Decrypt m ≡ cd mod n

46 / 53

RSA - Example

1. p = 61 and q = 53
2. n = pq = 3233
3. λ(n) = lcm(p − 1,q − 1)

4. = λ(3233) = lcm(60,52) = 780
5. Choose 1 < e < 780 (coprime to 780), eg e = 17
6. d = e−1 mod λ(n)

7. = 413 (as 1 = 17 ∗ 413 mod 780)

8. Public key = (e = 17,n = 3233)

9. Private key = (d = 413,m = 3233)

10. c(m) = m17 mod 3233
11. m(c) = c413mod3233
12. m = 65→ c = 6517 mod 3233 = 2790
13. 2790→ m = 2790413 mod 3233 = 65

47 / 53

RSA - Properties & Limitations

Finding d requires factorizing n (if finding p and q s.t.
n = p ∗ q: proven difficult (for p and q large)

Implementation is tricky : good PRNG, acceptable e

Relies on exponentiation which is expensive :
xy = x ∗ x ∗ ... ∗ x

y times

I Requires a (fast) multiplier
I y is big (if you want security)
I Way more expensive than xor !

48 / 53

Key management

The key distribution problem
I To encrypt a message or check a signature, Alice needs

Bob’s public key
I Otherwise, it may encrypt a message thinking only Bob will

read it, but maybe Charlie can read it instead
I How can she get this public key in a secure manner?
I Hard problem, no perfect solution

Note: Using the right key guarantees Bob is Bob, but not that
Bob is honnest ...

Existing solutions
I Hierarchical certification authorities
I Web of trust (eg PGP)
I Direct exchange of keys

49 / 53

Hybrid Cryptography

50 / 53

Comparing Symmetric / Asymmetric cryptogaphy

Symmetric cryptography
I 1 key per pair of participants (n2 keys)
I Fast: simple operations, easy to implement in HW

Asymmetric cryptography
I 1 pair of key per participant (2n keys)
I Slow: complex operations, eg exponentiations

Hybrid cryptography
I Alice encrypts a symmetric key with the public key of Bob
I Alice encrypts the message with the symmetric key
⇒ Best of both worlds

51 / 53

The “best of both worlds”

I Alice encrypts message with Symm key k
I Alice encrypts k with Bob’s public key
I Bob decrypts k with his private key
I Bob decrypts message with k

52 / 53

Next time

I Cryptographic protocols
I Public Key Authorities
I PGP

53 / 53

	Context
	Symmetric Cryptography
	Hash
	Asymmetric Cryptography
	Hybrid Cryptography

