
Secured Communication Protocols
–Cryptographie et Sécurité des

Communications–

Lionel Morel

Telecommunications - INSA Lyon

Fall-Winter 2021-22

1 / 32

Symmetric Cryptography

plaintext

key

Encrypt
Bonjour,
RDV au
twenty-two
bar,

0xAE472F26DC015

Unsafe Channel

Decrypt

Alice Bob

key
0xAE472F26DC015

plaintext
Bonjour,
RDV au
twenty-two
bar,

key exchanged through a presumably same channel

I Encryption/Decryption is cheap
I State-of-the-Art: AES
I Limitation: requires a key-sharing mechanism

2 / 32

Diffie-Hellman Key Exchange

Alice Bob

let’s agree on :
p = 23 (prime)
and g = 5
(primitive root modulo 23)

Alice chooses a
secret key PA

gPA mod p

Bob chooses a
secret key PB

gPB mod p

Alice computes
(gPB mod p)PA mod p
= gPBPA mod p

Bob computes
(gPA mod p)PB mod p
= gPAPB mod p
= gPBPA mod p

Alice and Bob now
share a common key
gPAPB mod p

3 / 32

Asymmetric Cryptography

I Each participant builds a (Pubk ,Privk) pair of keys

Encryption
Plaintext Padding

Scheme
m

Encrypt

c ≡ me mod n

Decryption
c Decrypt m ≡ cd mod n

4 / 32

Message-Authentication-Codes (hashes)

plaintext

key

Sign
Bonjour,
RDV au
twenty-two
bar,

0xAE472F26DC015

Unsafe Channel

Verify

Alice Bob

key
0xAE472F26DC015

Alice is really
the emitter!!

key exchanged through a presumably safe channel

5 / 32

Self-signed Certificates

Sign

idAlice

hash

Alice: (PubA, PrivA)

RSA

PrivA

sigAlice =
(idAlice, {h(idAlice)}PrivA)

Verify
sigAlice =

(idAlice, {h(idAlice)}PrivA)

hash RSA PubA

Check ?

Yes, that’s really Alice!

I Problem: Man-in-the-Middle

6 / 32

Man-in-the-Middle

I Bob and Alice want to communicate
I Bob −→ (B,PubB) −→ Alice
I Hypothesis: Charlie can read and modify messages

between Bob and Alice.
I Charlie falsifies Key definition of Bob:

Bob −→ (B,PubB) −→ Charlie −→ (B,PubC) −→ Alice
(he also keeps PubB for later)

I Now when Alice writes to Bob, she actually uses Charlie’s
public key

I Alice −→ {m}PubC −→ Bob

I Charlie can then eavesdrop all messages:
Alice −→ {m}PubC −→ Charlie→ {{m}PubC}PrivC = m −→

{m}PubB −→ Bob

7 / 32

Public-Key Infrastructure and Certificate Authorities

A PKI consists of:
I A Certificate Authority (CA) - stores, issues and signs

digital certificates
I A Registration Authority (RA) - verifies identity of entities

requesting their certificates to be stored at the CA.
I A Central Directory - secure location to store keys

I CAs are “Trusted Third Parties”

8 / 32

Certificate Authorities

A [PubA, PrivA]

B (insa-lyon.fr)[PubB, PrivB]

C (Certificate Authority) [PubC , PrivC]

PubC

• Each participant has its own set of pub/priv keys• Everybody has C’s public key
Init State

PubC

9 / 32

Certificate Authorities

A [PubA, PrivA]

B (insa-lyon.fr)[PubB, PrivB]

C (Certificate Authority)

- (idB, PubB)

[PubC , PrivC]

PubC

• Each participant has its own set of pub/priv keys• Everybody has C’s public key
Init State

PubC

1. B registers itself to C:

9 / 32

Certificate Authorities

A [PubA, PrivA]

B (insa-lyon.fr)[PubB, PrivB]

C (Certificate Authority)

- (idB, PubB)

2. C computes:- (idB, PubB).{h((idB, PubB))}PrivC

[PubC , PrivC]

PubC

• Each participant has its own set of pub/priv keys• Everybody has C’s public key
Init State

PubC

1. B registers itself to C:

9 / 32

Certificate Authorities

A [PubA, PrivA]

B (insa-lyon.fr)[PubB, PrivB]

C (Certificate Authority)

- (idB, PubB)

2. C computes:- (idB, PubB).{h((idB, PubB))}PrivC

[PubC , PrivC]

PubC

• Each participant has its own set of pub/priv keys• Everybody has C’s public key
Init State

PubC

1. B registers itself to C:

- keeps (idB, PubB).{h((idB, PubB))}PrivC

3. B:
- can provide it on demand

9 / 32

Certificate Authorities

A [PubA, PrivA]

B (insa-lyon.fr)[PubB, PrivB]

C (Certificate Authority)

- (idB, PubB)

2. C computes:- (idB, PubB).{h((idB, PubB))}PrivC

[PubC , PrivC]

PubC

• Each participant has its own set of pub/priv keys• Everybody has C’s public key
Init State

PubC

1. B registers itself to C:

- keeps (idB, PubB).{h((idB, PubB))}PrivC

3. B:

- gets {h((idB, PubB))}PrivC from B4. When wanting to access insa-lyon.fr, A:

- can provide it on demand

- verifies it with PubC

9 / 32

DNS

I The ICANN (Internet Corporation for Assigned Names and
Numbers) manages a list of Top-Level Domains
I .com .fr .net .uk
I 1 TLD/country, some general ones

I Each TLD is managed by (exactly) one Registry:
I .fr: AFINC
I .com: verysign

I Each registry authorizes several registrars to sell domain
names

10 / 32

whois insa-lyon.fr
%%
%% This is the AFNIC Whois server.
%%
%% complete date format : YYYY-MM-DDThh:mm:ssZ
%% short date format : DD/MM
%% version : FRNIC-2.5
%%
%% Rights restricted by copyright.
%% See https://www.afnic.fr/en/products-and-services/services/whois/whois-special-notice/
%%
%% Use ’-h’ option to obtain more information about this service.
%%
%% [77.134.1.180 REQUEST] >> -V Md5.5.10 insa-lyon.fr
%%
%% RL Net [##########] - RL IP [#########.]
%%

domain: insa-lyon.fr
status: ACTIVE
hold: NO
holder-c: INSA12-FRNIC
admin-c: SJ7971-FRNIC
tech-c: GRST1-FRNIC
tech-c: LM19215-FRNIC
tech-c: TP630-FRNIC
zone-c: NFC1-FRNIC
nsl-id: NSL1519-FRNIC
registrar: GIP RENATER
Expiry Date: 2022-12-31T23:00:00Z
created: 1994-12-31T23:00:00Z
last-update: 2021-12-31T23:36:35Z
source: FRNIC

11 / 32

ns-list: NSL1519-FRNIC
nserver: dns.univ-lyon1.fr
nserver: dns2.univ-lyon1.fr
source: FRNIC

registrar: GIP RENATER
type: Isp Option 1
address: Array
address: 75013 PARIS
country: FR
phone: +33 1 53 94 20 30
fax-no: +33 1 53 94 20 31
e-mail: domaine@renater.fr
website: http://www.renater.fr
anonymous: NO
registered: 1998-01-01T12:00:00Z
source: FRNIC

nic-hdl: INSA12-FRNIC
type: ORGANIZATION
contact: INSTITUT NAT SCIENCES APPLIQUEES LYON
address: INSA LYON
address: 20, avenue Albert Einstein
address: 69621 Villeurbanne
country: FR
phone: +33 4 72 43 81 14
fax-no: +33 4 72 43 85 00
e-mail: webmaster@insa-lyon.fr
registrar: GIP RENATER
changed: 2016-06-07T11:59:36Z nic@nic.fr
anonymous: NO
obsoleted: NO
eligstatus: not identified
reachstatus: not identified
source: FRNIC

12 / 32

DNSSEC key management (1)

www.insa-lyon.fr
’.’: [Pub•, Priv•] keys controlled by ICANN

IP served by ICANN
’.fr’: [Pub.fr , Priv.fr] keys controlled by AFNIC

IP served by AFNIC
’.fr’: [Pub.insa−lyon.fr , Priv.insa−lyon.fr] keys controlled by insa-lyon.fr

IP served by insa-lyon

13 / 32

DNSSEC key management (2)

insa-lyon.fr servers
Privinsa−lyon.fr

Pubinsa−lyon.fr

registrar

registry (AFNIC)

Pubinsa−lyon.fr

{Pubinsa−lyon.fr}Priv.fr

root (ICANN)

Pub.fr

{Pub.fr}Priv•

14 / 32

TLS

I History:
I SSL proposed in 1995 by Netscape (RIP)
I TLS proposed by the IETF, starting 1999
I Current version 1.3 (2018)

I TLS stands for Transport Layer Security
I It supersedes SSL
I Works on top of TCP/IP
I Application-independent, eg: HTTPs = HTTP+TLS, IMAPS

= IMAP+TLS

15 / 32

TLS (cont’d)

Confidentiality
I Exchanged data is encrypted using Symmetric-key

cryptography
I Encryption keys are re-newed for every session, ie TLS

uses session keys
Authenticity
I Identity of communicating parties is authenticated using

Public-key cryptography
Integrity
I Each message includes a Message Authentication Code

to prevent alteration

16 / 32

TLS (cont’d)

I Client and server agree to use TLS
I They perform a handshake procedure together (see next)
I Out of this handshake, they get (secret) encryption keys

they can then use to perform symmetric encryption

17 / 32

TLS handshake

Client Server
"shall we use TLS, my friend?"

"Yes of course, my dear!"

"can you work with DHE-RSA?"
"Yep!"

"Then how about HMAC-SHA256?"
"Yep!"

"BTW, here is who I am"
(granted you trust Bob-the-CA)

Bob-the-CA’s
Pubk

This is really "Server"

Perform Diffie-Hellman
Key-Exchange

18 / 32

SSH

I SSH stands for Secured Shell
I Provides a way to connect (shell) to a distant computer

while encrypting all data exchanged
I Before SSH:

I data was sent unencrypted over the network
I not so bad as internet was not there :)

I 1995: Tatu Ylönen proposed a secured version of a remote
shell

19 / 32

Sending Data Through SSH
I Consider a TCP connexion between 2 machines
I SSH breaks data into a series of packets

packet length
padding amount

payload

padding
MAC

Encrypted using a pre-established
encryption algorithm

Algorithms available
I EdDSA, ECDSA, RSA and DSA for public-key cryptography.
I ECDH and Diffie–Hellman for key exchange.
I HMAC, AEAD and UMAC for MAC.
I AES (and deprecated RC4, 3DES, DES[29]) for symmetric encryption.
I AES-GCM] and ChaCha20-Poly1305 for AEAD encryption.
I SHA (and deprecated MD5) for key fingerprint.

20 / 32

SSH properties

I Channel multiplexing: You can open a number of different
channels to send different data to/from different partners

I Tunneling: on can redirect a (eg) TCP flow into an ssh
tunnel

I Distant shell
I File transfer
I Port redirection

21 / 32

SSH Authentication

Client-side
I password
I public/private key

Server-side
I at 1st connection, server stores client’s key footprint
I for follow-up connection, server checks footprint
I if key is invalid: connection refused

NB
No guarantee on 1st connection =⇒ “opportunistic security ”

22 / 32

OpenSSH

OpenSSH is a software suite that includes command-line
utilities and daemons:
I scp (replacement for rcp) to copy files through encryted

channel
I sftp, replacement for ftp
I ssh itself
I ssh-agent to hold keys and ease authentication
I ssh-keygen to generate RSA, DSA or elliptic-curve keys
I sshd the ssh server daemon

23 / 32

Needham-Schroeder Symmetric Protocol (1978)
I A and B want to talk
I A (resp B) has a private key with server S, kAS (resp kBS)

Alice Server Bob
A, B, NA

{NA, KAB, B
{KAB, A}KBS}KAS

{KAB, A}KBS

ok, KAB is my key with A ...
and that’s OK ’cause I trust S.

"Hey Bob, here is our key"

"OK Alice, I have the key"

"Yes I can see that ... "
"BTW, I’m really A, I was
able to get NB and change
it ..."

{NB}KAB

{NB − 1}KAB

NB: Vulnerable to replay attack:
I Charlie gets an old compromised key KAB and pretends to

be A by sending {KAB,A}KBS to B
24 / 32

Needham-Schroeder: fixing the Replay Attack
Alice

Server

Bob

{KAB, A, N ′B}KBS

ok, KAB is my key with A ...
and that’s OK ’cause I trust S.

"Hey Bob, here is our key"

"OK Alice, I have the key"

"Yes I can see that ... "
"BTW, I’m really A, I was
able to get NB and change
it ..."

{NB}KAB

{NB − 1}KAB

"Hey, I’m A and I want to talk to you"

{A, N ′B}KBS "OK, can you first confirm with S?"

{A, B, NA, {A, N ′A}KBS}

{NA, KAB, B
{KAB, A, N ′B}KBS}KAS

Same as before...

25 / 32

Needham-Schroeder Public-Key (Asymetric) Protocol
A: (kPA, kSA) B: (kPB, kSB) S: (kPS, kSS)

Alice Server Bob

hey, look! I checked your nonce
It means I’m really B

"Can I talk to B?"

{KPB, B}KSS "Yes, here is B’s public key (signed)"

{NA, A}KPB

(NA, A)
"Can I talk to A?"

{KPA, A}KSS

{NA, NB}KPA

{NB, B}KPB

26 / 32

Kerberos

I Active Directory’s main authentication protocol
I No public key (symmetric keys only)
I How to share keys ?

I No key exchange protocol (eg Diffie-Hellman)
I No certificate verification

I Idea: Use passwords and long-term keys to derive
symmetric session keys

I Trust a server to provide session keys
I The connection with the server relies on pre-established

long-term keys

27 / 32

Kerberos architecture (1)

A

Key Distribution Center

B

S: Authentication
Server

T: Ticket-Granting
Service

checks you have
an account + your
password.

issues "tickets" you
can use to access
files or servers on
the network.

28 / 32

Kerberos architecture (1)

A

Key Distribution Center

B

1: A, TGS, NA

"I’m A and I want to talk to the
TGS, and here is a nonce."

S: Authentication
Server

T: Ticket-Granting
Service

checks you have
an account + your
password.

issues "tickets" you
can use to access
files or servers on
the network.

28 / 32

Kerberos architecture (1)

A

Key Distribution Center

B

1: A, TGS, NA

"I’m A and I want to talk to the
TGS, and here is a nonce."

2: {kAT , NA, T , L, TGS}kAS

ok, here is a ticket!

S: Authentication
Server

T: Ticket-Granting
Service

checks you have
an account + your
password.

issues "tickets" you
can use to access
files or servers on
the network.

28 / 32

Kerberos architecture (1)

A

Key Distribution Center

B

1: A, TGS, NA

"I’m A and I want to talk to the
TGS, and here is a nonce."

2: {kAT , NA, T , L, TGS}kAS

ok, here is a ticket!

2’ - NB: A decrypts this
msg and gets a symm.
key kAT to talk to T.

S: Authentication
Server

T: Ticket-Granting
Service

checks you have
an account + your
password.

issues "tickets" you
can use to access
files or servers on
the network.

28 / 32

Kerberos architecture (1)

A

Key Distribution Center

B

1: A, TGS, NA

"I’m A and I want to talk to the
TGS, and here is a nonce."

2: {kAT , NA, T , L, TGS}kAS

ok, here is a ticket!

2’ - NB: A decrypts this
msg and gets a symm.
key kAT to talk to T.

3: {kAT , A, L}kST

here is the key you (A) should use send
to T. NB: Only T can decrypt this.

"Ticket-Granting Ticket"

S: Authentication
Server

T: Ticket-Granting
Service

checks you have
an account + your
password.

issues "tickets" you
can use to access
files or servers on
the network.

28 / 32

Kerberos architecture (1)

A

Key Distribution Center

B

1: A, TGS, NA

"I’m A and I want to talk to the
TGS, and here is a nonce."

2: {kAT , NA, T , L, TGS}kAS

ok, here is a ticket!

2’ - NB: A decrypts this
msg and gets a symm.
key kAT to talk to T.

3: {kAT , A, L}kST

here is the key you (A) should use send
to T. NB: Only T can decrypt this.

"Ticket-Granting Ticket"

4: forward TGT to T.
"TGT"

S: Authentication
Server

T: Ticket-Granting
Service

checks you have
an account + your
password.

issues "tickets" you
can use to access
files or servers on
the network.

28 / 32

Kerberos architecture (2)

A

Key Distribution Center

B

S: Authentication
Server

T: Ticket-Granting
Service

checks you have
an account + your
password.

issues "tickets" you
can use to access
files or servers on
the network.

29 / 32

Kerberos architecture (2)

A

Key Distribution Center

B

S: Authentication
Server

T: Ticket-Granting
Service

checks you have
an account + your
password.

issues "tickets" you
can use to access
files or servers on
the network.

5: {A, TGTA, B, nA}kAT

Hey, I’m A and I want to talk to B...
Can you let me do that?

29 / 32

Kerberos architecture (2)

A

Key Distribution Center

B

S: Authentication
Server

T: Ticket-Granting
Service

checks you have
an account + your
password.

issues "tickets" you
can use to access
files or servers on
the network.

5: {A, TGTA, B, nA}kAT

Hey, I’m A and I want to talk to B...
Can you let me do that?

6: {kAB, nA, Tt , Tt , B}kAT

Yes, you’re granted. Here is you key
with B.

29 / 32

Kerberos architecture (2)

7: {kAB, A, L}kBT

A

Key Distribution Center

B

S: Authentication
Server

T: Ticket-Granting
Service

checks you have
an account + your
password.

issues "tickets" you
can use to access
files or servers on
the network.

5: {A, TGTA, B, nA}kAT

Hey, I’m A and I want to talk to B...
Can you let me do that?

6: {kAB, nA, Tt , Tt , B}kAT

Yes, you’re granted. Here is you key
with B.

Oh, and here is your keyt with B, that
only B can read.

29 / 32

Kerberos architecture (2)

8: {kAB, A, L}kBT

{A, Ta}kAB
7: {kAB, A, L}kBT

A

Key Distribution Center

B

S: Authentication
Server

T: Ticket-Granting
Service

checks you have
an account + your
password.

issues "tickets" you
can use to access
files or servers on
the network.

5: {A, TGTA, B, nA}kAT

Hey, I’m A and I want to talk to B...
Can you let me do that?

6: {kAB, nA, Tt , Tt , B}kAT

Yes, you’re granted. Here is you key
with B.

Oh, and here is your keyt with B, that
only B can read.

29 / 32

Kerberos architecture (2)

8: {kAB, A, L}kBT

{A, Ta}kAB
7: {kAB, A, L}kBT

A

Key Distribution Center

B

S: Authentication
Server

T: Ticket-Granting
Service

checks you have
an account + your
password.

issues "tickets" you
can use to access
files or servers on
the network.

5: {A, TGTA, B, nA}kAT

Hey, I’m A and I want to talk to B...
Can you let me do that?

6: {kAB, nA, Tt , Tt , B}kAT

Yes, you’re granted. Here is you key
with B.

Oh, and here is your keyt with B, that
only B can read.

8’: now B has a key to talk
to A.

29 / 32

Kerberos architecture (2)

8: {kAB, A, L}kBT

{A, Ta}kAB
7: {kAB, A, L}kBT

A

Key Distribution Center

B

S: Authentication
Server

T: Ticket-Granting
Service

checks you have
an account + your
password.

issues "tickets" you
can use to access
files or servers on
the network.

5: {A, TGTA, B, nA}kAT

Hey, I’m A and I want to talk to B...
Can you let me do that?

6: {kAB, nA, Tt , Tt , B}kAT

Yes, you’re granted. Here is you key
with B.

Oh, and here is your keyt with B, that
only B can read.

8’: now B has a key to talk
to A.

9: {TA + 1}kAB

Modification of the timestamp to con-
firm that I (B) was the only one able
to modify it

29 / 32

Conclusion (1/2)

I Today, cryptography is ahead of (civilian) cryptanalysis:
that has not always been the case (and may not be the
case in the future)

I Cryptography is a complex world
I It’s based on math!
I The security of cryptographic algorithms relies on a great

number of implementation details
I Cryptography is useful only if used ...

I correctly
I wisely

30 / 32

Conclusion (2/2)
Your living minimum is to:
I Know what cryptography can and cannot do for you
I Know when cryptography is adequate
I Use known libraries (eg OpenSSL) and not your own

home-made reimplementations

Key management is the crux
I Without the correct key, cryptography is useless!
I With the correct key, cryptography only garanties the

security of the connexion (not outsiders’ truthfulness). . .)

I The whole security of internet relies on encryption keys
I Good, that was the goal
I But key management is still a major issue

31 / 32

In practice. . .

http://xkcd.com/538/

32 / 32

http://xkcd.com/538/

