Secured Communication Protocols
—Cryptographie et Sécurité des
Communications—

Lionel Morel

Telecommunications - INSA Lyon

Fall-Winter 2021-22

1/32

Symmetric Cryptography

Alice

Bob

plaintext plaintext

Unsafe Channel

key

OXAE472F 261

key

0xAE472F 260

\ key exchanged through a presumably same channel J

» Encryption/Decryption is cheap
> State-of-the-Art: AES
> Limitation: requires a key-sharing mechanism

2/32

Diffie-Hellman Key Exchange

let's agree on : ‘\
" = 23 (pri
AN Ajice p =23 [prime) Bob 7
andg=>5

|—> (primitive root modulo 23) <—|

Alice chooses a Bob chooses a
secret key Pa secret key Pg

— s g¢medp — 0009
< — ¢"mdp ——

Bob co*'putes
(g™ mod p)©& mod p
= g™ mod p
— gPBPA mod p

Alice computes
(g”# mod p)P* mod p
- gPuP,1 mod p

!

Alice and Bob now
share a common key

3/32

Asymmetric Cryptography

» Each participant builds a (Puby, Privy) pair of keys

Encryption Decryption

Plaintext —— Pasdmg — $ c M,—\,, m = ¢’ mod n
cheme

c=m® mod n

4/32

Message-Authentication-Codes (hashes)

Alice

Bob

plaintext

Bonjour,

Alice is really
the emitter!!

au
twenty-two
bar,

Unsafe Channel

key

0xAE472F 26T

key

0:AE472F 260

‘\ key exchanged through a presumably safe channel ... J

5/32

Self-signed Certificates

Sign Verify

Alice: (Puba, Priva) Priva sigA““ = .
(idatice, {(id atice) } Privs)

idalice

) e
StGAlice =

(idasice, {h(idaiice) }priv.)
! Yes, that's really Alice!

» Problem: Man-in-the-Middle

6/32

Man-in-the-Middle

» Bob and Alice want to communicate

» Bob — | (B, Pubg) | — Alice

» Hypothesis: Charlie can read and modify messages
between Bob and Alice.

» Charlie falsifies Key definition of Bob:
Bob — — Charlie — | (B, Pubg) | — Alice
(he also keeps Pubg for later)

» Now when Alice writes to Bob, she actually uses Charlie’s
public key

> Alice — | {m}pup, | — Bob

» Charlie can then eavesdrop all messages:
Alice — | {m}pyp, | — Charlie — {{m}pup, }priv, = M —

7/32

Public-Key Infrastructure and Certificate Authorities

A PKI consists of:

» A Certificate Authority (CA) - stores, issues and signs
digital certificates

> A Registration Authority (RA) - verifies identity of entities
requesting their certificates to be stored at the CA.

> A Central Directory - secure location to store keys
» CAs are “Trusted Third Parties”

8/32

Certificate Authorities

A
[Puby, Priva)
Pubc

B (insa-lyon.fr)
[Pubg, Privg]
Pubc

Init State

e Each participant has its own set of pub/priv keys

e Everybody has C's public key

C (Certificate Authority) [Pube, Privc)

9/32

Certificate Authorities

A Init State

[Puby, Priva) e Each participant has its own set of pub/priv keys

Pub¢
e Everybody has C's public key

C (Certificate Authority) [Pube, Privc)

1. B registers itself to C:
- (idg, Pubg)

B (insa-lyon.fr)
[Pubg, Privg
Pubc

9/32

Certificate Authorities

A Init State

[Puby, Priva) e Each participant has its own set of pub/priv keys

Pub¢
e Everybody has C's public key

C (Certificate Authority) [Pube, Privc)
2. C computes: '
- (idg, Pubg).{h((idg, Pubg))}priv

1. B registers itself to C:
- (idg, Pubg)

B (insa-lyon.fr)
[Pubg, Privg
Pubc

9/32

Certificate Authorities

A Init State

[Puba, Priva) e Each participant has its own set of pub/priv keys

Pubc
e Everybody has C's public key

C (Certificate Authority) [Pube, Privc]
2. C computes: '
- (ids, Pubg).{h((idg, Pubg))}priv

1. B registers itself to C:
- (idg, Pubg)

B (insa-lyon.fr)
[Pubg, Privg
Pubc¢
3. B:

- keeps (idg, Pubg).{h((id, Pubg))}priv
- can provide it on demand

9/32

Certificate Authorities

A
[Puba, Priva)

Init State
e Each participant has its own set of pub/priv keys

Pubc

4. When wanting to access insa-lyon.fr, A:
- gets {h((idg, Pubg))}priv. from B
- verifies it with Pub¢

e Everybody has C's public key

C (Certificate Authority) [Pube, Privc]
2. C computes: '
- (ids, Pubg).{h((idg, Pubg))}priv

1. B registers itself to C:
- (idg, Pubg)

B (insa-lyon.fr)
[Pubg, Privg
Pubc¢
3. B:

- keeps (idg, Pubg).{h((id, Pubg))}priv
- can provide it on demand

9/32

DNS

Registry
AFNIC
ICANN gestion de .fr
gestion des TLD google. fr
yahoo . fr
fr cnil.fr
.uk franceS. fr
it Dao
.de
.com
.net
.org
-name VeriSign
5 ll:lf° gestion de .com/net/org...
.biz
google. com
yahco . com
sebsauvage net
w3c.or

» The ICANN (Internet Corporation for Assigned Names and

—_—

Registrar

. GLOBENET

vente de domaines en .fr

L NERIM

vente de domaines en .fr

. CLARANET

vente de domaines en .fr

Network Solutions
—» vente de domaines en
.com/net/org...

British Telecom
vente de domaines en
.com/net/org...

Gandi

— vente de domaines en
.com/net/org...

Numbers) manages a list of Top-Level Domains

10/32

whois insa-lyon.fr

%%

%% This is the AFNIC Whois server.

%%

%% complete date format : YYYY-MM-DDThh:mm:ssZ
%% short date format : DD/MM

%% version : FRNIC-2.5

%%

%% Rights restricted by copyright.

%% See https://www.afnic.fr/en/products-and-services/services/whois/whois-special-notice/
%%

%% Use ’-h’ option to obtain more information about this service.

%%

%% [77.134.1.180 REQUEST] >> -V Md5.5.10 insa-lyon.fr
%%

%% RL Net [##########] - RL IP [#########.]
%%

domain: insa-lyon. fr

status: ACTIVE

hold: NO

holder-c: INSA12-FRNIC

admin-c: S17971-FRNIC

tech-c: GRST1-FRNIC

tech-c: LM19215-FRNIC

tech-c: TP630-FRNIC

zone-c: NFC1-FRNIC

nsl-id: NSL1519-FRNIC

registrar: GIP RENATER
Expiry Date: 2022-12-31T23:00:00Z

created: 1994-12-31T23:00:00Z
last-update: 2021-12-31T23:36:35Z
source: FRNIC

11/32

ns-list: NSL1519-FRNIC

nserver: dns.univ-lyonl. fr
nserver: dns2.univ-lyonl. fr
source: FRNIC

registrar: GIP RENATER

type: Isp Option 1

address: Array

address: 75013 PARIS

country: FR

phone: +33 1 53 94 20 30

fax-no: +33 1 53 94 20 31

e-mail: domaine@renater. fr
website: http://www.renater. fr
anonymous : NO

registered: 1998-01-01T12:00:00Z
source: FRNIC

nic-hdl: INSA12-FRNIC

type: ORGANIZATION

contact: INSTITUT NAT SCIENCES APPLIQUEES LYON
address: INSA LYON

address: 20, avenue Albert Einstein
address: 69621 Villeurbanne
country: FR

phone: +33 4 72 43 81 14

fax-no: +33 4 72 43 85 00

e-mail: webmaster@insa-lyon. fr
registrar: GIP RENATER

changed: 2016-06-07T11:59:36Z nic@nic. fr
anonymous : NO

obsoleted: NO

eligstatus: not identified
reachstatus: not identified
source: FRNIC

12/32

DNSSEC key management (1)

) "2 [Pub., Privs] keys controlled by ICANN
www insa-lyon.fr

IP served by ICANN
"fr's [Pub 4., Privy,] keys controlled by AFNIC

IP served by AFNIC

“fr's [Pub insa—tyon.tr Privinsa—iyon.tr] keys controlled by insa-lyon.fr

IP served by insa-lyon

13/32

DNSSEC key management (2)

=
=

S
insa-lyon.fr servers

Privinsa—tyon.fr registrar Pubinsa—tyon.ir
P

-

registry (AFNIC)

Pub fr

root (ICANN)
{PUb,fr}Priv.

14/32

TLS

> History:
» SSL proposed in 1995 by Netscape (RIP)
» TLS proposed by the IETF, starting 1999
» Current version 1.3 (2018)

TLS stands for Transport Layer Security
It supersedes SSL
Works on top of TCP/IP

Application-independent, eg: HTTPs = HTTP+TLS, IMAPS
= IMAP+TLS

vvyyy

15/32

TLS (contd)

Confidentiality
» Exchanged data is encrypted using Symmetric-key
cryptography
» Encryption keys are re-newed for every session, ie TLS
uses session keys

Authenticity
» Identity of communicating parties is authenticated using
Public-key cryptography
Integrity
» Each message includes a Message Authentication Code
to prevent alteration

16/32

TLS (contd)

» Client and server agree to use TLS
» They perform a handshake procedure together (see next)

» Out of this handshake, they get (secret) encryption keys
they can then use to perform symmetric encryption

17/32

TLS handshake

Client Server

— » 'shall we use TLS, my friend?' ______&
4— "Yes of course, my dear!" t———

— ‘can you work with DHE-RSA?"
Yep!" <
—» "Then how about HMAC-SHA256?"
Yep!" <
Bob-the-CA's
Puby
@ st "BTW, here is who | am" €—

%’_\ x (granted you trust Bob-the-CA)

This is really "Server’

erform Diffie-Hellman
Key-Exchange

18/32

SSH

» SSH stands for Secured Shell

> Provides a way to connect (shell) to a distant computer
while encrypting all data exchanged

» Before SSH:

> data was sent unencrypted over the network
> not so bad as internet was not there :)

> 1995: Tatu YIénen proposed a secured version of a remote
shell

19/32

Sending Data Through SSH

» Consider a TCP connexion between 2 machines
» SSH breaks data into a series of packets

packet length

padding amount

Encrypted using a pre-established
payload encryption algorithm

padding
MAC

Algorithms available
> EdJDSA, ECDSA, RSA and DSA for public-key cryptography.
ECDH and Diffie—Hellman for key exchange.
HMAC, AEAD and UMAC for MAC.
AES (and deprecated RC4, 3DES, DES[29]) for symmetric encryption.
AES-GCM] and ChaCha20-Poly1305 for AEAD encryption.
SHA (and deprecated MD5) for key fingerprint.

vVvyYVYyYVvyy

20/32

SSH properties

» Channel multiplexing: You can open a number of different
channels to send different data to/from different partners

» Tunneling: on can redirect a (eg) TCP flow into an ssh
tunnel

» Distant shell
File transfer
» Port redirection

v

21/32

SSH Authentication

Client-side
> password
> public/private key

Server-side
» at 1st connection, server stores client’s key footprint
» for follow-up connection, server checks footprint
> if key is invalid: connection refused

NB
No guarantee on 1st connection = “opportunistic security”

22/32

OpenSSH

OpenSSH is a software suite that includes command-line
utilities and daemons:

| 2

vVvYyyVvyy

scp (replacement for rcp) to copy files through encryted
channel

sftp, replacement for ftp

ssh itself

ssh-agent to hold keys and ease authentication
ssh-keygen to generate RSA, DSA or elliptic-curve keys
sshd the ssh server daemon

23/32

Needham-Schroeder Symmetric Protocol (1978)

» A and B want to talk
> A (resp B) has a private key with server S, ks (resp kgs)

Alice Server Bob
o] —
{Na, Kag, B

{Kag, A}kss tas

ok, Kag is my key with A ...

and that’s OK ‘cause | trust S.
—> Kag, A
"Hey Bob, here is our key"
— .

"OK Alice, | have the key"

——»| {(Ng—1
"Yes | can see that ... " ¢

'BTW, I'm really A, | was
able to get Ng and change ¢
it.."

NB: Vulnerable to replay attack:

» Charlie gets an old compromised key Kag and pretends to
be A by sending {Kag, A}k, 10 B

24/32

Needham-Schroeder: fixing the Replay Attack

Alice

L » "Hey, I'm A and | want to talk to you"

Bob

{A Natros |

{A, B, Na, {A, N;}KBS}

Server

{Na, Kag, B

{Kas. A, N[’E}KBS}KAS

"OK, can you first confirm with S?"

Same as before...

ok, Kag is my key with A ...

and that’s OK ‘cause | trust S.

’ —— > |{Ka
Hey Bob, here is our key

"OK Alice, | have the key"

— (N -1
"Yes | can see that ... "

‘BTW, I'm really A, | was
able to get Ng and change ¢

it

!

25/32

Needham-Schroeder Public-Key (Asymetric) Protocol
A: (Kpa, ksa) B: (kps, ksg) S: (Kps, Kss)

Alice Server Bob
L—»'can I talk to B>

Kpg, B
["Yes, here is B's public key (signed)"
> {NA' A}KPB

(Na, A)
"Can | talk to A?"

' {Kra, At kss
{Na N}, | < hey, look! | checked your nonce

It means I'm really B

- [Fa]—
W

26/32

Kerberos

» Active Directory’s main authentication protocol
» No public key (symmetric keys only)

» How to share keys ?

> No key exchange protocol (eg Diffie-Hellman)
> No certificate verification

» ldea: Use passwords and long-term keys to derive
symmetric session keys

> Trust a server to provide session keys

» The connection with the server relies on pre-established
long-term keys

27/32

Kerberos architecture (1)

Key Distribution Center

S: Authentication
Server
checks you have
an account + your
password.

T: Ticket-Granting
Service
issues ‘tickets' you
can use to access
files or servers on
the network.

28/32

Kerberos architecture (1)

1: A, TGS, N,y

want to talk to the

TGS, and here is a nonce."

\

Key Distribution Center

S: Authentication
Server
checks you have
an account + your
password.

T: Ticket-Granting
Service
issues ‘tickets' you
can use to access
files or servers on
the network.

28/32

Kerberos architecture (1)

1: A, TGS, N \
an

want to talk to the

m
- TGS, and here is a nonce."
A

2: {kar,Na, T, L, TGS},

ok, here is a ticket!

Key Distribution Center

S: Authentication
Server
checks you have
an account + your
password.

T: Ticket-Granting
Service
issues ‘tickets' you
can use to access
files or servers on
the network.

28/32

Kerberos architecture (1)

2" - NB: A decrypts this
msg and gets a symm.
key kar to talk to T.

1: A, TGS, N,y

want to talk to the

/l‘ Tm A and 1
- TGS, and here is a nonce."
A

2: {kar,Na, T, L, TGS},

ok, here is a ticket!

Key Distribution Center

\-

S: Authentication
Server
checks you have
an account + your
password.

T: Ticket-Granting
Service
issues ‘tickets' you
can use to access
files or servers on
the network.

28/32

Kerberos architecture (1)

2" - NB: A decrypts this

msg and gets a symm. .
key kar to talk to T. Key Distribution Center

10 A TGS, Na \
S: Authentication

m A and T want to talk to the

TGS, and here is a nonce." Server
A | checks you have
an account + your

L password.

2: {kar,Na, T, L, TGS}

T: Ticket-Granting

Service

ok, here is a ticket!
issues ‘tickets’ you
can use to access

3t {kar, A, L}k,
files or servers on

here is the key you (A) should use send the network.
to T. NB: Only T can decrypt this.

‘Ticket-Granting Ticket"

28/32

Kerberos architecture (1)

2" - NB: A decrypts this
Key Distribution Center

msg and gets a symm.
key kar to talk to T.
1: A, TGS, Na \
m A and T want to talk to the S: Authentication
Server
checks you have

TGS, and here is a nonce."
L
an account + your

password.

2: {kar,Na, T, L, TGS}
ok, here is a ticket!

3: {kar A Lo,

here is the key you (A) should use send
to T. NB: Only T can decrypt this.

T: Ticket-Granting
Service
issues ‘tickets" you
can use to access
files or servers on
the network.

‘Ticket-Granting Ticket"

4: forward TGT to T.

28/32

Kerberos architecture (2)

Key Distribution Center

S: Authentication
Server
checks you have
an account + your
password.

T: Ticket-Granting
Service
issues ‘tickets’ you
can use to access
files or servers on
the network.

29/32

Kerberos architecture (2)

Key Distribution Center

5: {A, TGTa, B, na}iy,

S: Authenticati
Hey, I'm A and | want to talk to B... Serv:r nentication

?
A Can you let me do that checks you have
an account + your
password.

T: Ticket-Granting
Service
issues ‘tickets’ you
can use to access
files or servers on
the network.

29/32

Kerberos architecture (2)

5: {A, TGTa, B, na}iy,

Hey, I'm A and | want to talk to B...

Can you let me do that?

6: {kag. na, Te, Tt, Bhiyr

Yes, you're granted. Here is you key
with B.

Key Distribution Center

S: Authentication
Server
checks you have
an account + your
password.

T: Ticket-Granting
Service
issues ‘tickets’ you
can use to access
files or servers on

the network.

29/32

Kerberos architecture (2)

5: {A, TGTa, B, na}iy,

Hey, I'm A and | want to talk to B...

Can you let me do that?
6: {kag, na, Tr, Tt, B}y

Yes, you're granted. Here is you key
with B.

X Oh, and here is your keyt with B, that
7 {kas A Ly only B can read.

Key Distribution Center

S: Authentication
Server
checks you have
an account + your
password.

Service

T: Ticket-Granting

issues 'tickets” you
can use to access
files or servers on

the network.

29/32

Kerberos architecture (2)

5: {A, TGTa, B, na}iy,

Hey, I'm A and | want to talk to B...

Can you let me do that?

6: {kag. na, Te, Tt, Bhiyr

Yes, you're granted. Here is you key
with B.

X Oh, and here is your keyt with B, that
7 {kas A Ly only B can read.

8: {kag, A, L}y,
{A, Ta}is

Key Distribution Center

S: Authentication
Server
checks you have
an account + your
password.

Service

T: Ticket-Granting

issues 'tickets” you
can use to access
files or servers on
the network.

29/32

Kerberos architecture (2)

.H

5: {A, TGTa, B, natiy

Hey, I'm A and | want to talk to B...
Can you let me do that?

6: {kag, na, Tt, Ty, B}

Yes, you're granted. Here is you key
with B.

Oh, and here is your keyt with B, that

7: {kag, A, L} kg, only B can read.

8': now B has a key to talk

Key Distribution Center

S: Authentication
Server
checks you have
an account + your
password.

Service

T: Ticket-Granting

issues ‘tickets’ you
can use to access
files or servers on
the network.

29/32

Kerberos architecture (2)

5: {A, TGTa, B, natiy

Hey, I'm A and | want to talk to B...
Can you let me do that?

H

6: {kag, na, Tt, Ty, B}

Yes, you're granted. Here is you key
with B.

Oh, and here is your keyt with B, that

7: {kag, A, L} kg, only B can read.

Modification of the timestamp to con-

9: {Ta+ 1}k, | firm that I (B) was the only one able

to modify it

8': now B has a key to talk
~ 7 tA

Key Distribution Center

S: Authentication
Server
checks you have
an account + your
password.

Service

T: Ticket-Granting

issues ‘tickets’ you
can use to access
files or servers on
the network.

29/32

Conclusion (1/2)

» Today, cryptography is ahead of (civilian) cryptanalysis:
that has not always been the case (and may not be the
case in the future)

» Cryptography is a complex world

» It's based on math!

» The security of cryptographic algorithms relies on a great
number of implementation details

» Cryptography is useful only if used ...

> correctly
> wisely

30/32

Conclusion (2/2)
Your living minimum is to:
» Know what cryptography can and cannot do for you
» Know when cryptography is adequate

» Use known libraries (eg OpenSSL) and not your own
home-made reimplementations

Key management is the crux

» Without the correct key, cryptography is useless!

> With the correct key, cryptography only garanties the
security of the connexion (not outsiders’ truthfulness). . .)

» The whole security of internet relies on encryption keys
» Good, that was the goal
» But key management is still a major issue

31/32

In practice. . .

A CRYPTO NERD'S

[IMAGINATION *

HIS LAPTOPs ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
CUJSTER To CRACK\T-

No Goop! [T’
U096 -BIT R?JN

E\NL PLHN
15 FOILED! ™~

WHAT WoULD

| ACTUALLY HAPPEN:
HIS LAPTOP'S

DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE 'rEus LS THE PASSWORD.

GOT IT,

7Q

http://xkcd.com/538/

32/32

http://xkcd.com/538/

